2 resultados para Integration of operations

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

By law, Title I schools employ teachers who are both competent in their subject knowledge and State certified. In addition, Title I teachers receive ongoing professional development in technology integration and are equipped with the latest innovative resources to integrate technology in the classroom. The aim is higher academic achievement and the effective use of technology in the classroom. The investment to implement technology in this large urban school district to improve student achievement has continued to increase. In order to infuse current and emerging technology throughout the curriculum, this school district needs to know where teachers have, and have not, integrated technology. Yet the level of how technology is integrated in Title I schools is unknown. This study used the Digital-Age Survey Levels of Teaching Innovation (LoTi) to assess 508 Title I teachers’ technology integration levels using three major initiatives purchased by Title I— the iPads program, the Chromebook initiative, and the interactive whiteboards program. The study used a quantitative approach. Descriptive statistics, regression analysis, and statistical correlations were used to examine the relationship between the level of technology integration and the following dependent variables: personal computer use (PCU), current instructional practices (CIP), and levels of teaching innovation (LoTi). With this information, budgetary decisions and professional development can be tailored to the meet the technology implementation needs of this district. The result of this study determined a significant relationship between the level of teaching innovation, personal computer use, and current instructional practices with teachers who teach with iPad, Chromebook, and/or interactive whiteboard. There was an increase in LoTi, PCU, and CIP scores with increasing years of experience of Title I teachers. There was also a significant relationship between teachers with 20 years or more teaching experience and their LoTi score.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid, sensitive and selective detection of chemical hazards and biological pathogens has shown growing importance in the fields of homeland security, public safety and personal health. In the past two decades, efforts have been focusing on performing point-of-care chemical and biological detections using miniaturized biosensors. These sensors convert target molecule binding events into measurable electrical signals for quantifying target molecule concentration. However, the low receptor density and the use of complex surface chemistry in receptors immobilization on transducers are common bottlenecks in the current biosensor development, adding to the cost, complexity and time. This dissertation presents the development of selective macromolecular Tobacco mosaic virus-like particle (TMV VLP) biosensing receptor, and the microsystem integration of VLPs in microfabricated electrochemical biosensors for rapid and performance-enhanced chemical and biological sensing. Two constructs of VLPs carrying different receptor peptides targeting at 2,4,6-trinitrotoluene (TNT) explosive or anti-FLAG antibody are successfully bioengineered. The VLP-based TNT electrochemical sensor utilizes unique diffusion modulation method enabled by biological binding between target TNT and receptor VLP. The method avoids the influence from any interfering species and environmental background signals, making it extremely suitable for directly quantifying the TNT level in a sample. It is also a rapid method that does not need any sensor surface functionalization process. For antibody sensing, the VLPs carrying both antibody binding peptides and cysteine residues are assembled onto the gold electrodes of an impedance microsensor. With two-phase immunoassays, the VLP-based impedance sensor is able to quantify antibody concentrations down to 9.1 ng/mL. A capillary microfluidics and impedance sensor integrated microsystem is developed to further accelerate the process of VLP assembly on sensors and improve the sensitivity. Open channel capillary micropumps and stop-valves facilitate localized and evaporation-assisted VLP assembly on sensor electrodes within 6 minutes. The VLP-functionalized impedance sensor is capable of label-free sensing of antibodies with the detection limit of 8.8 ng/mL within 5 minutes after sensor functionalization, demonstrating great potential of VLP-based sensors for rapid and on-demand chemical and biological sensing.